

The trouble with ridiculous R/W numbers like these is not that there’s no theoretical benefit to faster storage, it’s that the quoted numbers are always for sequential access, whereas most desktop workloads are more frequently closer to random, which flash memory kinda sucks at. Even really good SSDs only deliver ~100MB/sec in pure random access scenarios. This is why you don’t really feel any difference between a decent PCIe 3.0 M.2 drive and one of these insane-o PCI-E 5.0 drives, unless you’re doing a lot of bulk copying of large files on a regular basis.
It’s also why Intel Optane drives became the steal of the century when they went on clearance after Intel abandoned the tech. Optane is basically as fast in random access as in sequential access, which means that in some scenarios even a PCIe 3.0 Optane drive can feel much, much snappier than a PCIe 4 .0 or 5.0 SSD that looks faster on paper.
Fair point. My thrust was more that the reason why things like system boot times and software launch speeds don’t seem to benefit as much as they seem like they should when moving from, say, a good SATA SSD (peak R/W speed: 600 MB/sec) to a fast m.2 that might have listed speeds 20+ times faster, is that QD1 performance of that m.2 drive might only be 3 or 4 times better than the SATA drive. Both are a big step up from spinning media, but the gap between the two in random read speed isn’t big enough to make a huge subjective difference in many desktop use cases.